Eigenvalue of Fractional Differential Equations withp-Laplacian Operator
نویسندگان
چکیده
منابع مشابه
Eigenvalue of Fractional Differential Equations with p-Laplacian Operator
Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...
متن کاملSolutions of fractional differential equations with p-Laplacian operator in Banach spaces
In this paper, we study the solutions for nonlinear fractional differential equations with p-Laplacian operator nonlocal boundary value problem in a Banach space. By means of the technique of the properties of the Kuratowski noncompactness measure and the Sadovskii fixed point theorem, we establish some new existence criteria for the boundary value problem. As application, an interesting exampl...
متن کاملA class of BVPs for nonlinear fractional differential equations with p-Laplacian operator
In this paper, we study a class of integral boundary value problems for nonlinear differential equations of fractional order with p-Laplacian operator. Under some suitable assumptions, a new result on the existence of solutions is obtained by using a standard fixed point theorem. An example is included to show the applicability of our result.
متن کاملEigenvalue Problem for a Class of Nonlinear Fractional Differential Equations
In this paper, we study eigenvalue problem for a class of nonlinear fractional differential equations D 0+u(t) = λf(u(t)), 0 < t < 1, u(0) = u(1) = u′(0) = u′(1) = 0, where 3 < α ≤ 4 is a real number, D 0+ is the Riemann–Liouville fractional derivative, λ is a positive parameter and f : (0,+∞)→ (0,+∞) is continuous. By the properties of the Green function and Guo–Krasnosel’skii fixed point theo...
متن کاملEigenvalue Problem of Nonlinear Semipositone Higher Order Fractional Differential Equations
and Applied Analysis 3 Lemma 2.1 see 8, 9 . 1 If x ∈ L1 0, 1 , ρ > σ > 0, and n ∈ N, then IIx t I x t , DtIx t Iρ−σx t , 2.4 DtIx t x t , d dtn Dtx t Dt x t . 2.5 2 If ν > 0, σ > 0, then Dttσ−1 Γ σ Γ σ − ν t σ−ν−1. 2.6 Lemma 2.2 see 8 . Assume that x ∈ L1 0, 1 and μ > 0. Then IDtx t x t c1tμ−1 c2tμ−2 · · · cntμ−n, 2.7 where ci ∈ R i 1, 2, . . . , n , n is the smallest integer greater than or eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2013
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2013/137890